Argument de Frattini

Soit (G,\cdot) un groupe fini, $H \unlhd G$ un sous-groupe **distingué**, et $S \in p\mathrm{Syl}(H)$ un p-Sylow de H. Alors

$$G = H \cdot N_G(S)$$

avec $N_G(S)$ le normalisateur de S.

Démonstration. Évidemment, $G \supset H \cdot \mathrm{N}_G(S)$. Soit $g \in G$. Montrons que $g \in H \cdot \mathrm{N}_G(S)$. $H \unlhd G$ donc $gSg^{-1} \subset H$ et c'est encore un p-Sylow de H par cardinalité $(gSg^{-1} \cong S)$. Or d'après le **théorème de Sylow** appliqué dans H, tous les p-Sylow de H sont conjugués entre eux :

$$\exists h \in H : gSg^{-1} = hSh^{-1}$$

Alors $h^{-1}gSg^{-1}h=S$, ou dit autrement, $h^{-1}g\in N_G(S)$. Donc $g\in h\cdot N_G(S)$.