Caractérisation séquentielle de la continuité à droite pour une fonction croissante

Soit $f: I \longrightarrow \mathbb{R}$ une fonction *croissante* avec I un voisinage de $a \in \mathbb{R}$. Alors

$$f$$
 continue à droite en a \iff $\forall (x_n)_{n\in\mathbb{N}}\in I^{\mathbb{N}}_{\searrow}: x_n\xrightarrow[n\to\infty]{} a, \ f(x_n)\xrightarrow[n\to\infty]{} f(a)$ \iff $f(a+1/n)\xrightarrow[n\to\infty]{} f(a)$

Preuve $3 \Rightarrow 1$:

Par contraposée, supposons que $f \xrightarrow{a^+} f(a)$, c'est à dire que

$$\exists \varepsilon > 0 \ : \ \forall \delta > 0, \ \exists x \in \,]a, a + \delta[\, \cap I \ : \underbrace{f(x) - f(a)}_{\geqslant 0 \ \text{car} \ x \geqslant a} \geqslant \varepsilon$$
 et par croissance de f

En particulier, $\forall n \in \mathbb{N}$, si l'on prend $\delta = \frac{1}{n}$, alors $\exists x_n \in \]a, a + 1/n[\cap I : f(x_n) - f(a) \geqslant \varepsilon$. Alors

$$f\!\left(a+\frac{1}{n}\right)-f\!\left(a\right) \;=\; \underbrace{f\!\left(a+\frac{1}{n}\right)-f\!\left(x_n\right)}_{\geqslant 0 \text{ car } a+\frac{1}{n}\geqslant \widetilde{x_n}} + \underbrace{f\!\left(x_n\right)-f\!\left(a\right)}_{\geqslant \varepsilon} \;\geqslant\; \varepsilon$$
 et par croissance de f

 $\text{Ainsi, } \forall n \in \mathbb{N}, \ f\!\left(a + \frac{1}{n}\right) - f\!\left(a\right) \geqslant \varepsilon \text{, donc } f\!\left(a + \frac{1}{n}\right) \xrightarrow[n \to \infty]{} f\!\left(a\right).$

Preuve $1 \Rightarrow 2$:

Supposons que f est continue à droite en a, c'est à dire que $f \xrightarrow[a^+]{} f(a)$, donc

$$\forall \varepsilon > 0, \ \exists \delta_{\varepsilon} > 0 \ : \ \forall x \in \]a, a + \delta_{\varepsilon} [\cap I, \underbrace{f(x) - f(a)}_{\geqslant 0 \ \text{car} \ x \geqslant a} < \varepsilon$$
 Soit $(x_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}_{\searrow} : x_n \xrightarrow[n \to \infty]{} a$, c'est à dire que et par croissance de f

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} : \forall n \geqslant N_{\varepsilon}, \ 0 \leqslant x_n - a < \varepsilon$$

Soit $\varepsilon>0$, posons $N=N_{\delta_{\varepsilon}}$. Alors $\forall n\geqslant N$, $0\leqslant x_n-a<\delta_{\varepsilon}$, c'est à dire $x_n\in]a,a+\delta_{\varepsilon}[$. Donc par continuité, $f(x_n)-f(a)<\varepsilon$. Ainsi,

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geqslant N, f(x_n) - f(a) < \varepsilon \text{ d'où } f(x_n) \xrightarrow[n \to \infty]{} f(a)$$

Preuve $2 \Rightarrow 3$: évident car $a + 1/n \xrightarrow[n \to \infty]{} a$.