Théorème de Rolle sur \mathbb{R}^n

Soit $(E,\|\cdot\|)$ un EVN de **dimension finie**, et $U\in\mathcal{O}(E)$ un ouvert non vide de E tel que \overline{U} soit **compact**. (en dimension infinie, tout compact est d'intérieur vide)

Soit $f:\overline{U}\longrightarrow\mathbb{R}$ une fonction à valeurs réelles **continue** sur tout \overline{U} et **différentiable** sur U. Alors si f est constante sur la frontière de U, alors sa différentielle s'annule en un point :

$$f|_{\partial U} = \text{cste} \implies \exists \vec{x} \in U : df(\vec{x}) = 0$$

Démonstration. On se ramène au cas où $f|_{\partial U}=0$ en remplaçant f par $f-{\rm cste}$. Si f=0 nulle, c'est gagné. Supposons maintenant que $f\neq 0$, et même quitte à remplacer f par -f que $\exists \vec{x}_0\in U: f(\vec{x}_0)>0$.

Puisque f est continue sur le compact \overline{U} , elle est bornée et atteint ses bornes, donc

$$\exists \vec{x}_{\mathrm{m}} \in \vec{U} : f(\vec{x}_{\mathrm{m}}) = \max_{\vec{U}} f \geqslant f(\vec{x}_{0}) > 0$$

De plus, $\overrightarrow{x_{\mathrm{m}}} \in U$ car $\not\in \partial U$ car $f|_{\partial U} = 0$. Or U est un ouvert, donc par définition du maximum,

$$\exists V \in \text{Vois}_E(\overrightarrow{x_m}) : \forall \overrightarrow{x} \in V, f(\overrightarrow{x}) \leqslant f(\overrightarrow{x_m})$$

c'est à dire que $\overrightarrow{x_{\mathrm{m}}}$ est un point de maximum local, donc un point critique : $\mathrm{d}f(\overrightarrow{x_{\mathrm{m}}}) = 0$.