Polynôme de Tchebychev et approximation uniforme

On note $\mathbb{R}[X]$ l'espace des polynômes réels en l'indéterminée X. On note $\mathbb{R}_n[X]$ le sous-espace vectoriel formé des polynômes de degré inférieur à $n \in \mathbb{N}$.

On identifiera polynôme et fonction polynomiale définie sur [-1,1].

On rappelle que toute fonction réelle f continue sur [-1,1] est bornée car continue sur un segment, on convient alors de noter $||f|| = \sup_{x \in [-1,1]} |f(x)|$ dont l'existence dans $\mathbb R$ est assurée par l'argument précédent.

Partie I

Pour $n \in \mathbb{N}$, on considère $f_n : [-1,1] \to \mathbb{R}$ définie par :

$$f_n(x) = \cos(n \arccos x)$$

- 1.a Simplifier $f_0(x), f_1(x), f_2(x)$ et $f_3(x)$. Représenter sur un même graphique ces applications.
- 1.b Démontrer que pour tout entier naturel n non nul et tout $x \in [-1,1]$:

$$f_{n+1}(x) = 2xf_n(x) - f_{n-1}(x)$$

1.c En déduire qu'il existe un unique polynôme T_n de $\mathbb{R}[X]$ tel que :

$$\forall x \in [-1,1], T_n(x) = f_n(x)$$

Calculer T_0, T_1, T_2, T_3 et T_4 .

- 2.a Quel est le degré de T_n ? Quel est son coefficient dominant?
- 2.b Déterminer les racines de T_n qui appartiennent à [-1,1]. Combien y en a-t-il ? Comment justifier que celles-ci sont simples et qu'il n'y en a pas d'autres ?
- 2.c Etudier la parité du polynôme T_n en fonction de la parité de l'entier n.
- 3.a Montrer: $\forall \theta \in \mathbb{R}, T_n(\cos \theta) = \cos(n\theta)$ et $\forall \theta \in \mathbb{R}, T_n(\operatorname{ch} \theta) = \operatorname{ch}(n\theta)$.
- 3.b En déduire que $\forall x \in \mathbb{R} : |x| \le 1 \Leftrightarrow |T_n(x)| \le 1$.

On suppose désormais que n est un entier naturel non nul.

- 4. Résoudre dans \mathbb{R} l'équation $|T_n(x)|=1$. On précisera le nombre de racines distinctes et la position relative des racines des équations $T_n(x)=1$ et $T_n(x)=-1$.
- 5. On pose $\tilde{T}_n = \frac{1}{2^{n-1}}T_n$ et on note P_n l'ensemble des polynômes unitaires de $\mathbb{R}[X]$ de degré exactement égal à n . Il est entendu que $\tilde{T}_n \in P_n$.
- 5.a Calculer $\|\tilde{T}_n\|$.

 On désire établir que \tilde{T}_n est un polynôme de P tel que la quantité $\|\tilde{T}_n\|$ soit minimale. Pour cela on raisonne par l'absurde : supposons qu'il existe P polynôme appartenant à P_n tel que $\|P\| < \|\tilde{T}_n\|$.
- 5.b On pose $D = \tilde{T}_n P$. Que dire du degré de D?
- 5.c Etudier le signe de $D\left(\cos\frac{k\pi}{n}\right)$ pour $k \in \{0,1,...,n\}$ et conclure.

Partie II

Soit n un entier naturel non nul et a_0, a_1, \ldots, a_n des points deux à deux distincts du segment [-1,1]. On pose pour tout $k \in \{0,1,\ldots,n\}$: $L_k = \prod_{\substack{j=0 \ j \neq k}}^n \frac{X-a_j}{a_k-a_j}$.

- 1.a Quel est le degré de L_k ?
- 1.b Calculer $L_k(a_i)$ pour tout $i \in \{0,1...,n\}$, $i \neq k$. Calculer aussi $L_k(a_k)$.
- 1.c Montrer que la famille $(L_k)_{0 \le k \le n}$ forme une base de $\mathbb{R}_n[X]$.
- 2. On se donne une fonction réelle f définie sur [-1,1], et on pose :

$$P = \sum_{k=0}^{n} f(a_k) L_k$$

Montrer que P est l'unique polynôme de $\mathbb{R}_n[X]$ tel que pour tout $i \in \{0,1,...,n\}$: $P(a_i) = f(a_i)$. On dit que P est le polynôme interpolateur de la fonction f aux points $a_0,a_1,...,a_n$.

On désire maintenant évaluer la qualité de l'approximation réalisée lorsqu'on approche la fonction f par le polynôme P défini ci-dessus. Pour cela on suppose que f est une fonction de classe \mathcal{C}^{n+1} et on pose

$$\Pi_{n+1} = \prod_{i=0}^{n} (X - a_i).$$

3. Soit $x \in [-1,1]$. On désire établir l'existence d'un $\xi \in [-1,1]$ tel que :

$$f(x) - P(x) = \frac{\prod_{n+1}(x)}{(n+1)!} f^{(n+1)}(\xi)$$

- 3.a On suppose $x \in \{a_0, ..., a_n\}$. Etablir le résultat.
- 3.b On suppose $\,x \not\in \left\{a_0, \ldots, a_n\right\}\,$ et on introduit la fonction $\,F\,$ définie par :

$$F(t) = f(t) - P(t) - K\Pi_{n+1}(t)$$

avec K constante réelle choisie de sorte que F(x) = 0.

Justifier l'existence de la constante K et observer que F possède au moins n+2 valeurs d'annulation distinctes. En déduire l'existence d'un $\xi \in [-1,1]$ tel que $F^{(n+1)}(\xi) = 0$ et conclure.

- 3.c En déduire que $||f P|| \le \frac{||\Pi_{n+1}||}{(n+1)!} ||f^{(n+1)}||$.
- 4. Comment doit-on choisir les points a_0, a_1, \dots, a_n pour que $\|\Pi_{n+1}\|$ soit minimale ?