Primitivation de fonctions périodiques

On considère $E=\mathcal{C}^0(\mathbb{R},\mathbb{R})$ le \mathbb{R} -espace vectoriel formé des fonctions réelles définies et continues sur \mathbb{R} . On introduit les sous-ensembles de E suivants :

- E_0 formé des fonctions f telles que $\int_0^{2\pi} f(t) dt = 0$,
- C formé des fonctions constantes,
- P formé des fonctions 2π périodiques,
- P_0 formé des fonctions f telles que $f \in P$ et $\int_0^{2\pi} f(t) \, dt = 0$.
- 1.a Montrer que E_0 et C sont des sous-espaces vectoriels.
- 1.b Montrer que E_0 et C sont supplémentaires dans E .
- 1.c Montrer que P est un sous-espace vectoriel E
- 1.d Etablir, par un $argument\ rapide$, que P_0 est aussi un sous-espace vectoriel de E .
- 2.a Soit $f \in E$ donnée.

Montrer que f possède une et une seule primitive $F:\mathbb{R}\to\mathbb{R}$ telle que $\int_0^{2\pi}F(t)\,dt=0$.

Nous noterons désormais L(f) cette primitive.

- 2.b L'application $L: E \to E$ est-elle injective, surjective, bijective?
- 3. Soit $f \in P$.
- 3.a Observer que $\forall a \in \mathbb{R}, \int_a^{a+2\pi} f(t) dt = \int_0^{2\pi} f(t) dt$.
- 3.b Montrer que f possède une primitive 2π périodique ssi $f \in P_0$
- 3.c Observer que, si tel est le cas, $L(f) \in P_0$.

On note $\mathcal{L}: P_0 \to P_0$ la restriction de L à P_0 , puis pour tout $n \in \mathbb{N}^*$, on pose : $\mathcal{L}^n = \mathcal{L} \circ \mathcal{L} \circ ... \circ \mathcal{L}$ (produit à n termes)

La suite de l'étude a pour objectif d'exprimer $\mathcal{L}^n(f)$ pour tout $f \in P_0$, à l'aide d'une seule intégrale.

4. On définit par récurrence sur $n\in\mathbb{N}$, des fonctions polynomiales $B_n:[0,2\pi]\to\mathbb{R}$ de la manière suivante :

on pose $B_0:[0,2\pi]\to\mathbb{R}$ la fonction polynomiale constante égale à 1,

puis pour tout $n \in \mathbb{N}$, on pose $B_{n+1} = L(B_n)$.

- 4.a Expliciter $B_n(t)$ pour n=1 et n=2.
- 4.b Montrer que $\forall n \in \mathbb{N}$ tel que $n \ge 2$, $B_n(0) = B_n(2\pi)$.
- 5. Pour tout $f\in P_0$ et tout $n\in\mathbb{N}$, on définit une fonction $\,\varphi_n:\mathbb{R}\to\mathbb{R}$ par :

$$\forall x \in \mathbb{R} , \ \varphi_n(f)(x) = \frac{(-1)^{n-1}}{2\pi} \int_0^{2\pi} B_n(t) f(x+t) dt .$$

- 5.a Montrer que $\varphi_n(f)$ est une fonction 2π périodique.
- 5.b Montrer $\varphi_1(f) = \mathcal{L}(f)$.
- 5.c Etablir que pour tout $n \ge 1$: $\varphi_{n+1}(f) = \varphi_n(\mathcal{L}(f))$.

5.d En déduire que pour tout $n \ge 1 : \varphi_n(f) = \mathcal{L}^n(f)$.